sábado, 26 de septiembre de 2015

El mercado de la robótica y la perspectiva en el futuro.


El mercado de la robótica y la perspectiva en el futuro.

Las ventas anuales para robots industriales han ido creciendo en Estados Unidos a razón del 25% de acuerdo a estadísticas del año 1981 a 1992. El incremento de ésta tasa se debe a factores muy diversos. En primer lugar, hay más personas en la industria que tienen conocimiento de la tecnología y de su potencial para sus aplicaciones de utilidad. En segundo lugar, la tecnología de la robótica mejorará en los próximos años de manera que hará a los robots más amistosos con el usuario, más fáciles de interconectar con otro hardware y más sencillos de instalar.
En tercer lugar, que crece el mercado, son previsibles economías de escala en la producción de robots para proporcionar una reducción en el precio unitario, lo que haría los proyectos de aplicaciones de robots más fáciles de justificar. En cuarto lugar se espera que el mercado de la robótica sufra una expansión más allá de las grandes empresas, que ha sido el cliente tradicional para ésta tecnología, y llegue a las empresas de tamaño mediano, pequeño y por que no; las microempresas. Estas circunstancias darán un notable incremento en las bases de clientes para los robots.
La robótica es una tecnología con futuro y también para el futuro. Si continúan las tendencias actuales, y si algunos de los estudios de investigación en el laboratorio actualmente en curso se convierten finalmente en una tecnología factible, los robots del futuro serán unidades móviles con uno o más brazos, capacidades de sensores múltiples y con la misma potencia de procesamiento de datos y de cálculo que las grandes computadoras actuales. Serán capaces de responder a ordenes dadas con voz humana. Así mismo serán capaces de recibir instrucciones generales y traducirlas, con el uso de la inteligencia artificial en un conjunto específico de acciones requeridas para llevarlas a cabo. Podrán ver, oír, palpar, aplicar una fuerza media con precisión a un objeto y desplazarse por sus propios medios.
En resumen, los futuros robots tendrían muchos de los atributos de los seres humanos. Es difícil pensar que los robots llegarán a sustituir a los seres humanos en el sentido de la obra de Carel Kapek, Robots Universales de Rossum. Por el contrario, la robótica es una tecnología que solo puede destinarse al beneficio de la humanidad. Sin embargo, como otras tecnologías, hay peligros potenciales implicados y deben establecerse salvaguardas para no permitir su uso pernicioso.
El paso del presente al futuro exigirá mucho trabajo de ingeniería mecánica, ingeniería electrónica, informática, ingeniería industrial, tecnología de materiales, ingenierías de sistemas de fabricación y ciencias sociales. 18. Proyecto quetzalcoatl Introducción
La Sociedad actual se encuentra inmersa en una Revolución Tecnológica, producto de la invención del transistor semiconductor en 1951 ( fecha en la que salió al mercado ). Este acontecimiento ha provocado cambios trascendentales así como radicales en los ámbitos sociales, económicos, y políticos del orbe mundial.
Ésta Revolución da origen a un gran número de ciencias multidiciplinarias; este es el caso de la Robótica. La Robótica es una ciencia que surge a finales de la década de los 50´s, y que a pesar de ser una ciencia relativamente nueva, ha demostrado ser un importante motor para el avance tecnológico en todos los ámbitos ( Industria de manufactura, ciencia, medicina, industria espacial; etc.), lo que genera expectativas muy interesantes para un tiempo no muy lejano.
Sin embargo es en la Industria de Manufactura donde la Robótica encuentra un campo de aplicación muy amplio, su función es la de suplir la mano de obra del Hombre en aquellos trabajos en los que las condiciones no son las óptimas para este ( minas, plantas nucleares, el fondo del mar; etc.), en trabajos muy repetitivos y en inumerables acciones de trabajo.
Debido al alto costo que representa el automatizar y robotizar un proceso de producción, la tendencia actual en Robótica es la investigación de microrobots y robots móviles autónomos con un cierto grado de inteligencia, este último es el campo en el que se basa este proyecto de investigación.
Por lo anteriormente expuesto se explica la necesidad y la importancia de que Institutos de Investigación, Centros Tecnológicos, la Industria Privada en coordinación con las Universidades se den a la tarea de destinar recursos tanto económicos y humanos para aliviar el rezago tecnológico que el país padece.
Cabe hacer mención que este proyecto fue financiado por el Centro de Investigación y Estudios Avanzados del IPN (CINVESTAV). ¿ QUE ES UN ROBOT ?
Un robot puede ser visto en diferentes niveles de sofisticación, depende de la perspectiva con que se mire. Un técnico en mantenimiento puede ver un robot como una colección de componentes mecánicos y electrónicos; por su parte un ingeniero en sistemas puede pensar que un robot es una colección de subsistemas interrelacionados; un programador en cambio, simplemente lo ve como una máquina ha ser programada; por otro lado para un ingeniero de manufactura es una máquina capaz de realizar un tarea específica. En contraste, un científico puede pensar que un robot es un mecanismo el cuál él construye para probar una hipótesis.
Un robot puede ser descompuesto en un conjunto de subsistemas funcionales: procesos, planeación, control, sensores, sistemas eléctricos, y sistemas mecánicos. El subsistema de Software es una parte implícita de los subsistemas de sensores, planeación, y control; que integra todos los subsistemas como un todo.
En la actualidad, muchas de las funciones llevadas acabo por los subsistemas son realizadas manualmente, o de una forma off-line, pero en un futuro las investigaciones en estos campos permitirán la automatización de dichas tareas.
El Subsistema de Procesos incluye las tareas que lleva acabo el robot, el medio ambiente en el cual es colocado, y la interacción entre este y el robot. Este es el dominio de la ingeniería aplicada. Antes de que un robot pueda realizar una tarea, ésta debe ser buscada dentro de una secuencia de pasos que el robot pueda ejecutar. La tarea de búsqueda es llevada acabo por el Subsistema de Planeación, el cuál incluye los modelos de procesos inteligentes, percepción y planeación. En el modelo de procesos, los datos que se obtienen de una variedad de sensores son fusionados (Integración Sensorial) con modelos matemáticos de las tareas para formar un modelo del mundo. Al usar este modelo de mundo, el proceso de percepción selecciona la estrategia para ejecutar la tarea. Estas estrategias son convertidas dentro de los programas de control de el robot durante el proceso de planeación.
Estos programas son ejecutados por el Subsistema de Control; en este subsistema, los comandos de alto nivel son convertidos en referencias para actuadores físicos, los valores retroalimentados son comparados contra estas referencias, y los algoritmos de control estabilizan el movimiento de los elementos físicos.
Al realizar ésta tarea los mecanismos son modelados, el proceso es modelado, la ganancia de lazo cerrado puede ser adaptada, y los valores medidos son utilizados para actualizar los procesos y los modelos de los mecanismos.
Desde el subsistema de control se alimentan las referencias de los actuadores al Subsistema Eléctrico el cuál incluye todos los controles eléctricos de los actuadores. Los actuadores hidráulicos y neumáticos son usualmente manejados por electroválvulas controladas. También, este subsistema contiene computadoras, interfaces, y fuentes de alimentación. Los actuadores manejan los mecanismos en el Subsistema Mecánico para operar en el medio ambiente, esto es, realizar una tarea determinada. Los parámetros dentro del robot y del medio ambiente son monitoreados por el Subsistema de Sensores; ésta información sensórica se utiliza como retroalimentación en las ganancias de lazo cerrado para detectar potencialmente las situaciones peligrosas, para verificar que las tareas se realizan correctamente, y para construir un modelo del mundo.
VEHÍCULOS
La mayoría de los robots usan ya sea ruedas o extremidades para moverse. Estas son usualmente montadas sobre una base para formar un vehículo, también se montan sobre ésta base, el equipo y los accesorios que realizan otras funciones. Los robots más versátiles son los robots "serpentina"; llamados así por que su locomoción se inspira en el movimiento de las serpientes; se pueden utilizar en terrenos subterráneos y de espacios reducidos, donde el hombre no tiene acceso y el medio ambiente no es el más propicio, como en las minas, túneles y ductos.
Algunos robots móviles tienen brazos manipuladores, esto es debido a sus funciones, y por otro lado la problemática de carecer de brazos idóneos; que tienen que ser pequeños, fuertes, eficientes y baratos. Un problema al cuál se enfrentan los diseñadores de robots, es la generación y almacenado de la energía; los cordones restringen el movimiento pero proveen energía ilimitada.
En contraste los robots con libre movimiento son limitados por su cantidad de energía que puedan almacenar y requieren de comunicación inalámbrica.
En la medida que los robots sean más sofisticados, serán utilizados en un mayor número de aplicaciones, muchas de las cuáles requieren movilidad. En algunas aplicaciones industriales, la necesidad de movilidad es eliminada por la construcción de células de trabajo alrededor del robot, de ésta manera un robot fijo puede dar servicio a varias máquinas. En estos sistemas de manufactura flexible (SMF) las partes son llevadas de una célula de trabajo a otra por vehículos autómatas. En ocasiones para limitar el movimiento del robot se monta sobre rieles para así llegar hasta las células de trabajo con menos complicaciones.
La movilidad es usualmente llevada acabo mediante ruedas, rieles ó extremidades. Los robots con extremidades pueden andar en terrenos más rugosos que los robot con rodado, pero el problema de control es más complejo. Los robots pueden alcanzar movilidad volando. Algunos se deslizan ligeramente sobre al tierra sobre conductos de aire; otros usan levitación magnética, para lo que se requieren superficies especialmente preparadas.
Los robots diseñados para usos en el espacio exterior no son afectados por la gravedad; se elimina el problema de levitación, pero se incrementa el problema del control y la estabilidad.
VEHÍCULOS DE RODADO
Mientras la gente y la mayoría de los animales se desplaza sobre extremidades, la mayoría de las máquinas móviles utilizan ruedas. La ruedas son más simples de controlar, tienen pocos problemas de estabilidad, usan menos energía por unidad de distancia de movimiento y son más veloces que las extremidades. La estabilidad se mantiene al fijar el centro de gravedad de el vehículo en triangulación de los puntos que tocan tierra. Sin embargo, las ruedas solamente pueden utilizarse sobre terrenos relativamente lisos y sólidos. Si se quiere utilizar el robot en terrenos rugosos las ruedas tienen que tener un tamaño mayor que los obstáculos encontrados.
El arreglo más familiar para las ruedas de un vehículo es el utilizado por los automóviles. Cuatro ruedas son colocadas en las esquinas de un rectángulo. La mayoría de estos vehículos tiene maniobrabilidad limitada debido a que tienen que avanzar para poder dar vuelta. También se requiere de un sistema de suspensión para asegurar que las ruedas estén en contacto con la superficie durante todo el tiempo. Cuando el robot se desplaza en línea recta las cuatro ruedas tienen que girar a la misma velocidad, en cambio al momento de dar vuelta las ruedas interiores giran más lento que las ruedas exteriores.
En un robot móvil, estos requerimientos son alcanzados por un buen diseño mecánico y mediante el control de la velocidad de las ruedas de dirección independiente. Sin embargo las imprecisiones que se presentan para alcanzar una trayectoria definida son causadas por factores mecánicos, deslizamiento de las ruedas, dobleces en los ejes de dirección, y desalineamiento de las ruedas. ¿EN QUE CONSISTE EL PROYECTO QUETZALCÓATL?
OBJETIVOS
  1. Construir el prototipo de un Robot Móvil Autónomo para propósitos didácticos y/o para prueba y verificación de algoritmos de control. Y dejar, con este proyecto de investigación, las bases para próximas mejoras en la optimización del prototipo.
  2. Crear nuevos investigadores que cuenten con experiencia y habilidad en el desarrollo de investigaciones y realización de proyectos de este tipo.
  3. Motivar y crear bases para el desarrollo de más proyectos didácticos y/o aplicados a la industria.
  4. Crear vínculos con otras instituciones de enseñanza superior en el Estado con la Universidad de Guadalajara.
METODOLOGÍA DEL DISEÑO 
El proyecto consta básicamente de cuatro etapas; Etapa de Investigación, Etapa de Síntesis Informativa, Etapa de Diseño y Construcción, Etapa de pruebas, calibración y control. A).- Etapa de Investigación. 
a) Adquisición de Bibliografía.

b) Búsqueda de las fuentes de información específicas de aquellos elementos que constituyen el prototipo.
c) Investigación de las variables que intervienen en el proceso de control del prototipo.
d) Adquisición y estudio del software para el desarrollo e implementación de los algoritmos de control. B).- Etapa de Síntesis de la Información.

Ésta etapa se basa en la etapa anterior y da como resultado una serie de elementos que son necesarios para el desarrollo de las siguientes etapas de el proyecto. C).- Etapa de Diseño y Construcción. 
En ésta etapa se aplica toda la información que se recaba y consulta, y que el diseño del prototipo requiere para el cumplimiento de los objetivos planteados anteriormente. En base a estos lineamientos se construyen las piezas que conforman el prototipo, con el material y componentes adecuados. D).- Etapa de Pruebas, Calibración y Control. 
Ésta es la etapa final, se adoptan las medidas necesarias para alcanzar los objetivos planteados. Se aplican los algoritmos de control y se prueban hasta conseguir el resultado esperado. DESCRIPCIÓN DEL PROYECTO 
El sistema propuesto consta de :

Un Robot Móvil Autónomo.
Se encuentra formado por 2 módulos unidos entre sí mediante una unión mecánica, la locomoción del prototipo se realiza por medio de dos ruedas en cada eslabón, en donde cada una de las que son parte de el primer eslabón cuenta con un actuador ( motorreductor de DC ).
Los servosistemas se componen de un Driver tipo Chopper con control en lazo cerrado de velocidad, para cada actuador en forma independiente.
La alimentación del Robot se realiza mediante módulos de baterías de 12 V y los voltajes se adaptan por medio de convertidores DC-DC.
La información del entorno donde se mueve el Robot se recaba mediante sensores ultrasónicos, los cuales cuentan con una tarjeta de interfaz, la cual pasa dicha información al Cerebro del Robot.

Debido a la complejidad del proyecto, este se descompone en un conjunto de subsistemas que son: - Subsistema Mecánico. 
Este subsistema incluye los eslabones, las uniones mecánicas y el módulo que contiene a todo el sistema que permite que las ruedas giren ( ruedas, ejes, coples, baleros). - Subsistema Eléctrico 
Este subsistema incluye los servosistemas ( Drivers ), las interfaces entre los sensores, los drivers y la computadora, así como las fuentes de alimentación.


-Subsistemas de Sensores 
Ésta incluye los sensores de velocidad de tipo incremental, y sensores ultrasónicos para la exploración del medio ambiente. - Subsistemas de Procesos, Planeación y Control 
En este subsistema se encuentran el control de los motores y todas las tareas que realiza el prototipo interiormente y exteriormente al interactuar con el medio ambiente.


Aquí les daré un vídeo del tema :


La robótica cuántica.


La robótica cuántica.

El mundo de las comunicaciones y los ordenadores se está revolucionado gracias a la introducción de la mecánica cuántica, pero esta misma herramienta también podría emplearse para desarrollarrobots, autómatas y demás agentes que usen la Inteligencia Artificial (IA), según un estudiorealizado por investigadores de la Universidad Complutense de Madrid (UCM) y la Universidad de Innsbruck (Austria) que ha sido publicado en la revista Physical Review X.
La mecánica cuántica, concretamente, podría favorecer el aprendizaje (machine learning, en inglés) de esta clase de agentes pudiendo así esponder de forma óptima y más rápida al entorno, elaborando modelos y predicciones muy precisas. Los mismos motores que se aplican, por ejemplo, para conocer la evolución del clima o en el desarrollo de los motores de búsqueda por internet.
Según Miguel A. Martín-Delgado, uno de los investigadores de la UCM que han participado en el estudio, la denominada "inteligencia artificial cuántica" (Quantum AI) podría ser el futuro de la robótica (no en vano, Google ha comenzado a invertir millones de dólares mediante la creación de un laboratorio especializado en colaboración con la NASA):
Aquí les daré un vídeo del tema :

La robótica en la ciencia ficción.


La robótica en la ciencia ficción.

No obstante las limitaciones de las máquinas robóticas actuales, el concepto popular de un robot es que tiene apariencia humana y que actúa como un ser humano. Este concepto humanoide ha sido inspirado y estimulado por varias narraciones de ciencia ficción. Una de las primeras obras importantes a este concepto fue una novela de Mary Shelley, publicada en Inglaterra en 1817. Con el título de Frankenstein, la narración se refiere a los esfuerzos de un científico, el doctor Frankenstein, para crear un monstruo humanoide que luego produjo estragos en la comunidad local. La narración ha sido popularizada en varias versiones a través de los años, plasmados en varias producciones cinematográficas. La imagen en la pantalla cinematográfica del monstruo de Frankenstein salió fuera de los planes de su bien intencionada creadora para producir una impresión duradera en las mentes de millones de personas. Esta impresión ha dado lugar a que los robots se asimilen a imágenes similares de ciencia y tecnología concierto peligro de locura homicida. Una obra checoslovaca publicada en el año de 1917 por Carel Capek, denominada ³Rossum´s Universal Robots´, da lugar al término robot. La palabra checa ³robota´ significa servidumbre o trabajador forzado, y cuando se tradujo al inglés se convirtió en el término robot. Dicha narración se refiere a un brillante científico llamado Rossum y su hijo, quienes desarrollan una sustancia química que es similar al protoplasma. Utilizan esta sustancia para fabricar robots, y sus planes consisten en que los robots sirven a la clase humana deforma obediente y para realizar todos los trabajos físicos. Rossum prosigue realizando mejoras en el diseño de los robots, eliminando órganos y otros elementos innecesarios, y finalmente desarrolla un ser perfecto. El argumento experimenta un giro desagradable cuando los robots perfectos comienzan a no cumplir con su papel de servidores y se rebelan contra sus dueños, destruyendo toda la vida humana.


Aquí les daré un vídeo :


sábado, 19 de septiembre de 2015


Redes neuronales artificiales.

Las redes de neuronas artificiales (denominadas habitualmente como RNA o en inglés como: "ANN" ) son un paradigma de aprendizaje y procesamiento automático inspirado en la forma en que funciona elsistema nervioso de los animales. Se trata de un sistema de interconexión de neuronas que colaboran entre sí para producir un estímulo de salida. En inteligencia artificial es frecuente referirse a ellas como redes de neuronas o redes neuronales.
Los primeros modelos de redes neuronales datan de 1943 por los neurólogos Warren McCulloch y Walter Pitts. Años más tarde, en 1949, Donald Hebb desarrolló sus ideas sobre el aprendizaje neuronal, quedando reflejado en la "regla de Hebb". En 1958, Rosenblatt desarrolló el perceptrón simple, y en 1960, Widrow y Hoff desarrollaron elADALINE, que fue la primera aplicación industrial real.
En los años siguientes, se redujo la investigación, debido a la falta de modelos de aprendizaje y el estudio de Minsky y Papert sobre las limitaciones del perceptrón. Sin embargo, en los años 80, volvieron a resurgir las RNA gracias al desarrollo de la red de Hopfield, y en especial, al algoritmo de aprendizaje de retropropagación (BackPropagation) ideado por Rumelhart y McClelland en 1986 que fue aplicado en el desarrollo de los perceptrones multicapa.
La mayoría de los científicos coinciden en que una RNA es muy diferente en términos de estructura de un cerebro animal. Al igual que el cerebro, una RNA se compone de un conjunto masivamente paralelo de unidades de proceso muy simples y es en las conexiones entre estas unidades donde reside la inteligencia de la red. Sin embargo, en términos de escala, un cerebro es muchísimo mayor que cualquier RNA creada hasta la actualidad, y las neuronas artificiales también son más simples que su contrapartida animal.
Biológicamente, un cerebro aprende mediante la reorganización de las conexiones sinápticas entre las neuronas que lo componen. De la misma manera, las RNA tienen un gran número de procesadores virtuales interconectados que de forma simplificada simulan la funcionalidad de las neuronas biológicas. En esta simulación, la reorganización de las conexiones sinápticas biológicas se modela mediante un mecanismo de pesos, que son ajustados durante la fase de aprendizaje. En una RNA entrenada, el conjunto de los pesos determina el conocimiento de esa RNA y tiene la propiedad de resolver el problema para el que la RNA ha sido entrenada.
Por otra parte, en una RNA, además de los pesos y las conexiones, cada neurona tiene asociada una función matemática denominada función de transferencia. Dicha función genera la señal de salida de la neurona a partir de las señales de entrada. La entrada de la función es la suma de todas las señales de entrada por el peso asociado a la conexión de entrada de la señal. Algunos ejemplos de entradas son la función escalón de Heaviside, la lineal o mixta, la sigmoide y la función gaussiana, recordando que la función de transferencia es la relación entre la señal de salida y la de entrada.
Aquí les daré un vídeo del tema:

Los primeros robots.

En el siglo IV antes de Cristo, el matemático griego Arquitas de Tarento construyó un ave mecánica que funcionaba con vapor y al que llamó «La paloma». También el ingenieroHerón de Alejandría (10-70 d. C.) creó numerosos dispositivos automáticos que los usuarios podían modificar, y describió máquinas accionadas por presión de aire, vapor y agua.6 Por su parte, el estudioso chino Su Sung levantó una torre de reloj en 1088 con figuras mecánicas que daban las campanadas de las horas.7
Al Jazarí (1136–1206), un inventor musulmán de la dinastía Artuqid, diseñó y construyó una serie de máquinas automatizadas, entre los que había útiles de cocina, autómatas musicales que funcionaban con agua, y en 1206 los primeros robots humanoides programables. Las máquinas tenían el aspecto de cuatro músicos a bordo de un bote en un lago, entreteniendo a los invitados en las fiestas reales. Su mecanismo tenía un tambor programable con clavijas que chocaban con pequeñas palancas que accionaban instrumentos de percusión. Podían cambiarse los ritmos y patrones que tocaba el tamborilero moviendo las clavijas.
El artesano japonés Hisashige Tanaka (1799–1881), conocido como el «Edison japonés», creó una serie de juguetes mecánicos extremadamente complejos, algunos de los cuales servían té, disparaban flechas retiradas de un carcaj e incluso trazaban un kanji (caracteres utilizados en la escritura japonesa).8
Por otra parte, desde la generalización del uso de la tecnología en procesos de producción con la Revolución Industrial se intentó la construcción de dispositivos automáticos que ayudasen o sustituyesen al hombre. Entre ellos destacaron los Jaquemarts, muñecos de dos o más posiciones que golpean campanas accionados por mecanismos de relojería china y japonesa.

Robots equipados con una sola rueda fueron utilizados para llevar a cabo investigaciones sobre conducta, navegación y planeo de ruta. Cuando estuvieron listos para intentar nuevamente con los robots caminantes, comenzaron con pequeños hexápodos y otros tipos de robots de múltiples patas. Estos robots imitaban insectos y artrópodos en funciones y forma. Como se ha hecho notar anteriormente, la tendencia se dirige hacia ese tipo de cuerpos que ofrecen gran flexibilidad y han probado adaptabilidad a cualquier ambiente. Con más de 4 piernas, estos robots son estáticamente estables lo que hace que el trabajar con ellos sea más sencillo. Sólo recientemente se han hecho progresos hacia los robots con locomoción bípeda.

En el sentido común de un autómata, el mayor robot en el mundo tendría que ser el Maeslantkering, una barrera para tormentas del Plan Delta en los Países Bajos construida en los años 1990, la cual se cierra automáticamente cuando es necesario. Sin embargo, esta estructura no satisface los requerimientos de movilidad o generalidad.
En 2002 Honda y Sony, comenzaron a vender comercialmente robots humanoides como «mascotas». Los robots con forma de perro o de serpiente se encuentran, sin embargo, en una fase de producción muy amplia, el ejemplo más notorio ha sido Aibo de Sony.
Aquí les daré un vídeo del tema:


viernes, 18 de septiembre de 2015

Historia de la robótica.


Historia de la robótica.

Por siglos el ser humano ha construido máquinas que imiten las partes del cuerpo humano. Los antiguos egipcios unieron brazos mecánicos a las estatuas de sus dioses. Estos brazos fueron operados por sacerdotes, quienes clamaban que el movimiento de estos era inspiración de sus dioses. Los griegos construyeron estatuas que operaban con sistemas hidráulicas, los cuales se utilizaban para fascinar a los adoradores de los templos.
Durante los siglos XVII y XVIII en Europa fueron construidos muñecos mecánicos muy ingeniosos que tenían algunas características de robots.
Jacques de Vauncansos construyó varios músicos de tamaño humano a mediados del siglo XVIII. Esencialmente se trataba de robots mecánicos diseñados para un propósito específico: la diversión.
En 1805, Henri Maillardert construyó una muñeca mecánica que era capaz de hacer dibujos. Una serie de levas se utilizaban como ‘ el programa ’ para el dispositivo en el proceso de escribir y dibujar. Éstas creaciones mecánicas de forma humana deben considerarse como inversiones aisladas que reflejan el genio de hombres que se anticiparon a su época. Hubo otras invenciones mecánicas durante la revolución industrial, creadas por mentes de igual genio, muchas de las cuales estaban dirigidas al sector de la producción textil. Entre ellas se puede citar la hiladora giratoria de Hargreaves (1770), la hiladora mecánica de Crompton (1779), el telar mecánico de Cartwright (1785), el telar de Jacquard (1801), y otros.
El desarrollo en la tecnología, donde se incluyen las poderosas computadoras electrónicas, los actuadores de control retroalimentados, transmisión de potencia a través de engranes, y la tecnología en sensores han contribuido a flexibilizar los mecanismos autómatas para desempeñar tareas dentro de la industria. Son varios los factores que intervienen para que se desarrollaran los primeros robots en la década de los 50’s. La investigación en inteligencia artificial desarrolló maneras de emular el procesamiento de información humana con computadoras electrónicas e inventó una variedad de mecanismos para probar sus teorías.
No obstante las limitaciones de las máquinas robóticas actuales, el concepto popular de un robot es que tiene una apariencia humana y que actúa como tal. Este concepto humanoide ha sido inspirado y estimulado por varias narraciones de ciencia ficción.
Una obra checoslovaca publicada en 1917 por Karel Kapek, denominada Rossum’s Universal Robots, dio lugar al término robot. La palabra checa ‘Robota’ significa servidumbre o trabajador forzado, y cuando se tradujo al ingles se convirtió en el término robot. 


A continuación les daré un vídeo con mas información del tema:



martes, 15 de septiembre de 2015

La inteligencia artificial.


La inteligencia artificial.

La inteligencia artificial (IA) es un área multidisciplinaria, que a través de ciencias como las ciencias de la computación, la matemática, la lógica y la filosofía, estudia la creación y diseño de sistemas capaces de resolver problemas cotidianos por sí mismas utilizando como paradigma la inteligencia humana.

General y amplio como eso, reúne a amplios campos, los cuales tienen en común la creación de máquinas capaces de pensar. En ciencias de la computación se denomina inteligencia artificial a la capacidad de razonar de un agente no vivo. John McCarthy acuñó la expresión «inteligencia artificial» en 1956, y la definió así: “Es la ciencia e ingenio de hacer máquinas inteligentes, especialmente programas de cómputo inteligentes”.

También existen distintos tipos de percepciones y acciones, que pueden ser obtenidas y producidas, respectivamente, por sensores físicos y sensores mecánicos en máquinas, pulsos eléctricos u ópticos en computadoras, tanto como por entradas y salidas de bits de un software y su entorno software.

Varios ejemplos se encuentran en el área de control de sistemasplanificación automática, la habilidad de responder a diagnósticos y a consultas de los consumidores, reconocimiento de escriturareconocimiento del habla y reconocimiento de patrones. Los sistemas de IA actualmente son parte de la rutina en campos como economíamedicinaingeniería y la milicia, y se ha usado en gran variedad de aplicaciones de software, juegos de estrategia, como ajedrez de computador, y otrosvideojuegos.

Realidad Aumentada.

La robótica.


La robótica.

La robótica es la rama de la tecnología que se dedica al diseño, construcción, operación, disposición estructural, manufactura y aplicación de los robots.

La robótica combina diversas disciplinas como son: la mecánica, la electrónica, la informática, la inteligencia artificial, la ingeniería de control y la física.Otras áreas importantes en robótica son el álgebra, los autómatas programables, la animatrónica y las máquinas de estados.

El término robot se popularizó con el éxito de la obra R.U.R. (Robots Universales Rossum), escrita por Karel Čapek en 1920. En la traducción al inglés de dicha obra, la palabra checa robota, que significa trabajos forzados, fue traducida al inglés como robot.

La historia de la robótica va unida a la construcción de "artefactos", que trataban de materializar el deseo humano de crear seres a su semejanza y que lo descargasen del trabajo. El ingeniero español Leonardo Torres Quevedo (GAP) (que construyó el primer mando a distancia para su automóvil mediante telegrafía sin hilo, el ajedrecista automático, el primer transbordador aéreo y otros muchos ingenios) acuñó el término "automática" en relación con la teoría de la automatización de tareas tradicionalmente asociadas.

Karel Čapek, un escritor checo, acuñó en 1921 el término "Robot" en su obra dramática Rossum's Universal Robots / R.U.R., a partir de la palabra checa robota, que significa servidumbre o trabajo forzado. El término robótica es acuñado por Isaac Asimov, definiendo a la ciencia que estudia a los robots. Asimov creó también las Tres Leyes de la Robótica. En la ciencia ficción el hombre ha imaginado a los robots visitando nuevos mundos, haciéndose con el poder, o simplemente aliviando de las labores caseras.